Effects Of Slot Loading On Microstrip Patch Antennas

Effects of slot loading on microstrip patch antennas reviews

  1. Effects Of Slot Loading On Microstrip Patch Antennas For Sale

In this paper, a novel compact dual-band microstrip patch antenna with dual-radiation modes is investigated. The proposed antenna consists of a rectangular ground plane, a U-shaped feed probe, and an H-shaped slot radiating patch. By adjusting the size of these structures, a dual-band antenna can be obtained. Drawbacks or disadvantages of Microstrip Antenna. Following are the disadvantages of Microstrip Antenna: ➨The spurious radiation exists in various microstrip based antennas such as microstrip patch antenna, microstrip slot antenna and printed dipole antenna. ➨It offers low efficiency due to dielectric losses and conductor losses.

International Journal of Microwave Science and Technology 2010
Microstrip

DOI: 10.1155/2010/535307

Full-TextCite this paperAdd to My Lib

Effects Of Slot Loading On Microstrip Patch Antennas For Sale

Abstract:

Three patch antennas suitable for integration and operation in a compact 24?GHz wireless sensor node with radar and communication functions are designed, characterized, and compared. The antennas are manufactured on a low loss glass wafer using thin film (BCB/Cu) wafer level processing (WLP) technologies. This process is well suited for 3D stacking. The antennas are fed through a microstrip line underneath a ground plane coupling into the patch resonator through a slot aperture. Linear polarization (LP), dual mode (DM) operation, and circular polarization (CP) are achieved through the layout of the slot aperture and rectangular patch dimensions. Antenna gain values of ~5.5?dBi are obtained in addition to the 10 dB impedance bandwidths of 900?MHz and 1.3?GHz as well as 500?MHz CP bandwidth with a 3?dB axial ratio for the LP, DM, and CP patch antennas, respectively. 1. Introduction Autarkic wireless sensor networks are becoming widespread in industrial applications and have been in the focus of many research activities [1]. The development and application of tiny radio sensor nodes that are equipped with radar and communication functions are of interest for gathering spatial information in addition to sensor information [2]. The 24?GHz unlicensed ISM (industrial, scientific, and medical) frequency band, with a free space wavelength of 12.5?mm, allows the realization of radar with a spatial resolution in the cm-range. There is also more bandwidth (250?MHz) available for frequency modulated communication and radar signals compared to the popular ISM band at 2.4 GHz. Another advantage of the short wavelength is that efficient antennas can be realized for integration in the sensor node platform increasing the miniaturization potential. The integrated antenna plays a crucial role in the overall system performance of such sensor node applications. To date, much research has focused on planar antenna designs for quasi millimeter-wave applications using PCB or LTCC technologies [3–5]. However, highly integrated sensor node platforms comprise compact 3D stacks, where the antenna is integrated in one of the stack modules [6–8]. For this purpose, antenna designs suitable for 3D stacks and thin film processing have been reported. These include patch antennas processed directly on silicon substrates [9]. Since silicon substrates are lossy, micromachining techniques [10], used to create cavities, and high resistivity silicon (HRS) substrates [11] have been employed to increase the antenna efficiency. These approaches, however, lead to high costs. Therefore, in order to

ReferencesEffects of slot loading on microstrip patch antennas free
[1] M. Niedermayer, S. Guttowski, R. Thomasius, D. Polityko, K. Schrank, and H. Reichl, “Miniaturization platform for wireless sensor nodes based on 3D-packaging technologies,” in Proceedings of the 5th International Conference on Information Processing in Sensor Networks (IPSN '06), pp. 391–398, April 2006.
[2] R. Ebelt, H. Millner, and M. Vossiek, “Wireless network-to-network localization for measuring the spatial position and orientation of vehicles,” in Proceedings of the IEEE International Conference on Wireless Information Technology and Systems (ICWITS '10), Honolulu, Hawaii, USA, August 2010.
[3] F. Ohnimus, A. Podlasly, J. Bauer et al., “Electrical design and characterization of elevated antennas at PCB-level,” in Proceedings of the 59th Electronic Components and Technology Conference (ECTC '09), pp. 1618–1623, May 2009.
[4] P. R. Grajek, B. Schoenlinner, and G. M. Rebeiz, “A 24-GHz high-gain Yagi-Uda antenna array,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 5, pp. 1257–1261, 2004.
[5] T. Seki, N. Honma, K. Nishikawa, and K. Tsunekawa, “A 60-GHz multilayer parasitic microstrip array antenna on LTCC substrate for system-on-package,” IEEE Microwave and Wireless Components Letters, vol. 15, no. 5, pp. 339–341, 2005.
[6] H. Reichl and M. J. Wolf, “System integration technologies for ultra small systems,” in Proceedings of the 11th IEEE International Symposium and Exhibition on Advanced Packaging Materials Processes, Properties and Interfaces, p. 11, Atlanta, Ga, USA, 2006.
[7] P. K. Talukder, M. Neuner, C. Meliani, F. J. Schmückle, and W. Heinrich, “A 24 GHz active antenna in flip-chip technology with integrated frontend,” in Proceedings of the IEEE MTT-S International Microwave Symposium Digest, pp. 1776–1779, June 2006.
[8] M. M. Hella, S. Devarajan, J. Q. Lu, K. Rose, and R. J. Gutmann, “Die-on-wafer and wafer-level 3D integration for millimeter-wave smart antenna transceivers,” in Proceedings of the IEEE Annual Conference on Wireless and Microwave Technology (WAMICON '05), pp. 125–128, April 2005.
[9] R. Carrillo-Ramirez and R. W. Jackson, “A highly integrated millimeter-wave active antenna array using BCB and silicon substrate,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 6, pp. 1648–1653, 2004.
[10] J. G. Yook and L. P. B. Katehi, “Micromachined microstrip patch antenna with controlled mutual coupling and surface waves,” IEEE Transactions on Antennas and Propagation, vol. 49, no. 9, pp. 1282–1289, 2001.
[11] P. M. Mendes, S. Sinaga, A. Polyakov, M. Bartek, J. N. Burghartz, and J. H. Correia, “Wafer-level integration of on-chip antennas and RF passives using high-resistivity polysilicon substrate technology,” in Proceedings of the 54th Electronic Components and Technology Conference, pp. 1879–1884, June 2004.
[12] A. Latif, A. Oulad-Said, and A. A. Ouahman, “Passage from an inset-fed rectangular patch antenna to an end-fed and probe-fed rectangular patch antenna, modelling and analyses,” in Proceedings of the IEEE International Conference on Industrial Technology (ICIT '04), pp. 932–937, December 2004.
[13] B. M. Alarjani and J. S. Dahele, “Feed reactance of rectangular microstrip patch antenna with probe feed,” Electronics Letters, vol. 36, no. 5, pp. 388–390, 2000.
[14] Y. Murakami, S. Sekine, and H. Shoki, “Analysis of cross-slot-coupled circular microstrip antenna,” Electronics Letters, vol. 38, no. 25, pp. 1619–1621, 2002.
[15] B. Ai-Jibouri, T. Viasits, E. Korolkiewicz, S. Scott, and A. Sambell, “Transmission-line modelling of the cross-aperture-coupled circular polarised microstrip antenna,” IEE Proceedings: Microwaves, Antennas and Propagation, vol. 147, no. 2, pp. 82–86, 2000.
[16] W. Yi, W. Lei, and S. Yunqing, “Design of L-circularly polarized microstrip antenna array at Ka band,” in Proceedings of the International Conference Microwave and Millimeter Wave Technology (ICMMT '10), Chengdu, China, May 2010.
[17] W. S. T. Rowe and R. B. Waterhouse, “Investigation of proximity coupled patch antennas suitable for MMIC integration,” in Proceedings of the International Symposium on Antennas and Propagation, pp. 1591–1594, June 2004.
[18] S. Vajha and P. Shastry, “A novel proximity coupled patch antenna for active circuit integration,” in Proceedings of the IEEE Antennas and Propagation Society International Symposium-Adaptive Arrays in Communications-, pp. 772–775, July 2001.
[19] D. G. Kim, C. B. Smith, C.-H. Ahn, and K. Chang, “A dual-polarization aperture coupled stacked microstrip patch antenna for wideband application,” in Proceedings of the IEEE International Symposium on Antennas and Propagation and CNC-USNC/URSI Radio Science Meeting—Leading the Wave (AP-S/URSI '10), Toronto, Canada, July 2010.
[20] B. Al-Jibouri, H. Evans, E. Korolkiewicz, E. G. Lim, A. Sambell, and T. Viasits, “Cavity model of circularly polarised cross-aperture-coupled microstrip antenna,” IEE Proceedings: Microwaves, Antennas and Propagation, vol. 148, no. 3, pp. 147–152, 2001.
[21] C. A. Balanis, Antenna Theory—Analysis and Design, 2nd edition, 1997.